Clever patentiert: Intelligenz in die Zelle
Typische Energiespeicher bestehen aus fest miteinander verbundenen Einzelzellen, die etwa 40 Prozent der Anschaffungskosten eines Elektroautos ausmachen. Fällt eine Zelle aus, muss meist das komplette Batteriesystem ausgetauscht werden. Ein solcher Wechsel ist teuer und zeitaufwendig. Am Fraunhofer IPA haben Wissenschaftler eine »Intelligente Zelle« entwickelt und erfolgreich patentieren lassen. In jeder einzelnen Zelle ist eine Schaltung integriert, die auch den aktuellen Ladezustand erfasst. Bei Bedarf lassen sich alte oder defekte Elemente individuell und schnell auswechseln. Vorteile des Gesamtsystems: geringere Kosten, höhere Reichweite und längere Lebensdauer.
Um den Batteriewechsel im Wartungsfall bei Elektroautos zu vereinfachen, kosteneffizient zu gestalten und Werkstattaufenthalte zu verkürzen, haben Wissenschaftler am Fraunhofer IPA das Konzept einer intelligenten Zelle für ein modulares Batteriemanagementsystem (BMS) entwickelt und 2013 patentieren lassen. Das BMS aus standardisierten Hardwarekomponenten kommt ohne zentrales übergeordnetes System aus. »Die Intelligenten Zellen bestehen aus einem Energiespeicher und einer elektronischen Schaltung, die fest in das Zellengehäuse integriert ist. Sie bilden selbst ein verteiltes BMS, haben ein Gedächtnis, können eine Selbstdiagnose durchführen und z. B. ihre Ladehistorie kommunizieren«, erläutert Kai Pfeiffer, Gruppenleiter am Fraunhofer IPA.
Dezentrales Batteriemanagementsystem
Ein lese- und schreibfähiger Datenspeicher in jeder Batteriezelle informiert über den Ladezustand und sichert den Verlauf bisheriger Lade- und Entladezyklen. Damit sorgt das dezentral skalierbare BMS dafür, dass alte oder defekte Batteriezellen rechtzeitig aus dem Gesamtsystem entfernt werden können. »Entscheidender Vorteil der dezentralisierten, also zellenbasierten Datenspeicherung ist, dass sich die standardisierten Batteriezellen einzeln austauschen lassen. Somit bleiben wertbestimmende und herstellerabhängige Komponenten, wie etwa das crashsichere Gehäuse oder Elektronikkomponenten, erhalten«, erläutert Jonathan Brix, Gruppenleiter am Fraunhofer IPA. »Durch die optimierte Auslastung jeder Batteriezelle lassen sich die Lebensdauer der Gesamtbatterie verlängern und die Kosten erheblich senken«, so Brix.
Intelligenz erhält jede Batteriezelle in Form einer Halbleiterplatine, die über Sensoren, Mess- und Schaltelemente verfügt und dezentral mit den übergestellten Rechnermodulen des Fahrzeugs über Powerline (PLC) kommuniziert. »Die Schaltelemente sind mittels Leistungselektronik realisiert, sodass defekte Batteriezellen überbrückt und sicher aus dem Gesamtsystem entfernt werden können. Mit der PLC können wir vor allem den Verkabelungsaufwand und die Systemkomplexität minimieren«, sagt Mihai Dragan, wissenschaftlicher Mitarbeiter am Fraunhofer IPA. Anwendbar ist das dezentrale BMS nicht nur im Bereich Elektromobilität. »Das vom Fraunhofer IPA patentierte System ist problemlos auf beliebige Energiespeicher, wie etwa stationäre Energiespeicher oder Solaranlagen, übertragbar«, resümiert Dragan.
Die Entwicklungsplattform ist momentan diskret realisiert, für industrielle Anwendungen wird die »Intelligente Zelle« in Form einer anwendungsspezifischen integrierten Schaltung (ASIC) umgesetzt und kann somit in hohen Stückzahlen kostengünstig produziert werden.
Graphen-Elektroden erhöhen Energieeffizienz deutlich
In zahlreichen Tests untersuchten der Forscher und sein Team das Nanomaterial Graphen. Mit seiner extrem hohen spezifischen, sprich der messbaren inneren Oberfläche von bis zu 2600 m2/g und seiner hohen elektrischen Leitfähigkeit bietet es sich als Elektrodenmaterial geradezu an. Dem bislang verwendeten Werkstoff Aktivkohle mit einer spezifischen Oberfläche zwischen 100 und 800 m2/g ist es deutlich überlegen. Graphen besteht aus einem ultradünnen, einlagigen Netz von Kohlenstoffatomen. Es vergrößert die Oberfläche der Elektroden erheblich. »Der Raum zwischen den Elektroden ist mit einem flüssigen Elektrolyt gefüllt. Hierbei setzen wir auf ionische Flüssigkeiten. Graphenbasierte Elektroden in Kombination mit ionischen Elektrolyten sind die ideale Materialkombination«, sagt Glanz. Indem die Forscher die Graphen-Schichten so zueinander anordneten, dass zwischen den einzelnen Lagen ein Abstand besteht, konnten sie ein Herstellungsverfahren etablieren, durch das die theoretisch verfügbare Oberfläche des Nanomaterials auch tatsächlich nutzbar wird. Es verhindert, dass sich die einzelnen Graphen-Schichten verbinden. Denn das hätte zur Folge, dass sich die Speicherfläche verringern würde und damit auch die speicherbare Energiemenge. »Die entwickelten Elektroden besitzen bereits heute eine um 75% höhere Speicherkapazität im Vergleich zu kommerziell verfügbaren Elektroden, die bisher in Superkondensatoren eingesetzt werden«, betont der Ingenieur. »Ich gehe davon aus, dass im Auto der Zukunft eine Batterie mit vielen, räumlich verteilten Kondensatoren gekoppelt sein wird, die etwa die Steuerung von Klimaanlage, Navigationssystem und Spiegeln übernehmen, so dass die Batterie entlastet und Spannungsspitzen beim Anlassen des Autos abgefangen werden können. Die Batterie ließe sich somit auch kleiner bauen.«
Um die neue Technologie präsentieren zu können, hat das Projektkonsortium einen Demonstrator des Energiespeichers entwickelt. Er ist im Autospiegel angebracht und sorgt für die richtige Einstellung desselben. Das energieautarke System wird über eine Solarzelle geladen. Der Demonstrator wurde erstmals Ende Mai auf einem Workshop am IPA vorgestellt.