Closed-loop recycling concept to extend service life
Of course, the researchers do not have to develop the fuel cell from scratch, but they do have to develop the entire periphery, such as the heat exchanger, air filter and buffer cell. They will need to match the size and capacity of the individual components in order to design a generator with the capacity for reliable electric power production. This also requires a battery. “It has to step in whenever there is a demand for more electricity than the fuel cell can supply,” explains Friedrich-Wilhelm Speckmann from the Center for Battery Cell Manufacturing (ZDB) at Fraunhofer IPA. “In quieter phases, the battery storage system is recharged with surplus electricity.”
In general, the entire system must be adapted to the conditions in India. In addition to extreme environmental conditions with temperatures of up to 50˚C, this also includes a service life that is as long and cost-effective as possible. To this end, the research team will also be developing a closed-loop recycling concept tailored to the decentralized power supply. “Initially, this will include predictive service and maintenance measures,” says Jan Koller from the Project Group Process Innovation in Bayreuth, which is part of Fraunhofer IPA. “In the long term, however, the reuse and remanufacturing of individual components is also important,” he adds.
The research team is currently still looking for a suitable partner and location in India for the trial phase and is being supported by the Indo-German Chamber of Commerce (AHK India). For comparative purposes, a second prototype is being put into operation at CBC in Ibbenbüren.